Explorando A Volatilidade Médica Mover Ponderada Exponencialmente é a medida mais comum de risco, mas vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, consulte Usando a volatilidade para avaliar o risco futuro.) Usamos os dados atuais do preço das ações da Googles para calcular a volatilidade diária com base em 30 dias de estoque de dados. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel ponderada exponencialmente (EWMA). Vs históricos. Volatilidade implícita Primeiro, vamos colocar essa métrica em um pouco de perspectiva. Existem duas abordagens amplas: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é o prólogo que medimos a história na esperança de que seja preditivo. A volatilidade implícita, por outro lado, ignora o histórico que resolve para a volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que de forma implícita, uma estimativa consensual da volatilidade. (Para leitura relacionada, veja Os Usos e Limites de Volatilidade.) Se nos concentrarmos apenas nas três abordagens históricas (à esquerda acima), eles têm dois passos em comum: Calcule a série de retornos periódicos. Aplica um esquema de ponderação. Primeiro, nós Calcule o retorno periódico. Isso geralmente é uma série de retornos diários, em que cada retorno é expresso em termos compostos continuamente. Para cada dia, tomamos o log natural da proporção dos preços das ações (ou seja, preço hoje dividido por preço ontem, e assim por diante). Isso produz uma série de retornos diários, de u i to u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando a volatilidade para avaliar o risco futuro), mostramos que, sob um par de simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Observe que isso resume cada um dos retornos periódicos, então divide esse total pelo Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos ao quadrado. Dito de outra forma, cada retorno quadrado recebe um peso igual. Então, se o alfa (a) é um fator de ponderação (especificamente, um 1m), então uma variância simples parece algo assim: O EWMA melhora a diferença simples. A fraqueza dessa abordagem é que todos os retornos ganham o mesmo peso. O retorno de ontem (muito recente) não tem mais influência na variação do que o retorno dos últimos meses. Esse problema é corrigido usando a média móvel ponderada exponencialmente (EWMA), na qual os retornos mais recentes têm maior peso na variância. A média móvel ponderada exponencialmente (EWMA) apresenta lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno ao quadrado é ponderado por um multiplicador da seguinte forma: por exemplo, RiskMetrics TM, uma empresa de gerenciamento de risco financeiro, tende a usar uma lambda de 0,94 ou 94. Neste caso, o primeiro ( Mais recente) o retorno periódico ao quadrado é ponderado por (1-0.94) (. 94) 0 6. O próximo retorno ao quadrado é simplesmente um múltiplo lambda do peso anterior neste caso 6 multiplicado por 94 5,64. E o terceiro dia anterior é igual (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser inferior a um) do peso dos dias anteriores. Isso garante uma variação ponderada ou tendenciosa em relação a dados mais recentes. (Para saber mais, confira a Planilha do Excel para a Volatilidade dos Googles.) A diferença entre a simples volatilidade e o EWMA para o Google é mostrada abaixo. A volatilidade simples efetivamente pesa cada retorno periódico em 0.196 como mostrado na Coluna O (tivemos dois anos de dados diários de preço das ações. Isso é 509 devoluções diárias e 1509 0.196). Mas observe que a coluna P atribui um peso de 6, então 5.64, depois 5.3 e assim por diante. Essa é a única diferença entre variância simples e EWMA. Lembre-se: depois de somar toda a série (na coluna Q), temos a variância, que é o quadrado do desvio padrão. Se queremos volatilidade, precisamos lembrar de assumir a raiz quadrada dessa variância. Qual é a diferença na volatilidade diária entre a variância e EWMA no caso do Googles. É significativo: a variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para obter detalhes). Aparentemente, a volatilidade de Googles estabeleceu-se mais recentemente, portanto, uma variação simples pode ser artificialmente alta. A diferença de hoje é uma função da diferença de dias de Pior. Você notará que precisamos calcular uma série longa de pesos exponencialmente decrescentes. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que a série inteira se reduz convenientemente a uma fórmula recursiva: Recursiva significa que as referências de variância de hoje (ou seja, são uma função da variância dos dias anteriores). Você também pode encontrar esta fórmula na planilha e produz exatamente o mesmo resultado que o cálculo de longitude. Diz: A variação de hoje (sob EWMA) é igual a variação de ontem (ponderada por lambda) mais retorno de ônibus quadrado (pesado por um menos lambda). Observe como estamos apenas adicionando dois termos em conjunto: variância ponderada de ontem e atraso de ontem, retorno quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como RiskMetrics 94) indica decadência mais lenta na série - em termos relativos, teremos mais pontos de dados na série e eles vão cair mais devagar. Por outro lado, se reduzirmos a lambda, indicamos maior deterioração: os pesos caem mais rapidamente e, como resultado direto da rápida deterioração, são usados menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque e a métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variância historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variação simples é que todos os retornos recebem o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados temos, mais nosso cálculo será diluído por dados distantes (menos relevantes). A média móvel ponderada exponencialmente (EWMA) melhora a variação simples ao atribuir pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso aos retornos mais recentes. (Para ver um tutorial de filme sobre este tópico, visite a Tartaruga Bionica.) Vs Simples. Médias móveis exponenciais As médias móveis são mais do que o estudo de uma seqüência de números na ordem sucessiva. Os primeiros praticantes da análise de séries temporais estavam realmente mais preocupados com os números das séries temporais individuais do que com a interpolação desses dados. Interpolação. Sob a forma de teorias de probabilidade e análise, surgiram muito mais tarde, à medida que os padrões foram desenvolvidos e as correlações descobertas. Uma vez entendidas, várias curvas e linhas moldadas foram desenhadas ao longo da série temporal em uma tentativa de prever onde os pontos de dados podem ir. Estes são agora considerados métodos básicos atualmente utilizados pelos comerciantes de análise técnica. A análise de gráficos pode ser rastreada até o Japão do século 18, mas como e quando as médias móveis foram aplicadas pela primeira vez para os preços de mercado, continua sendo um mistério. Em geral, entende-se que as médias móveis simples (SMA) foram usadas muito antes das médias móveis exponenciais (EMA), porque as EMAs são construídas na estrutura SMA e o contínuo SMA foi mais facilmente compreendido para fins de traçado e rastreamento. (Vocês gostam de um pouco de fundo de leitura) Verificando as médias móveis: o que são) Média móvel simples (SMA) As médias móveis simples tornaram-se o método preferido para rastrear os preços do mercado, porque eles são rápidos em calcular e fácil de entender. Os praticantes do mercado precoce operaram sem o uso das métricas de gráfico sofisticadas em uso hoje, então eles dependiam principalmente dos preços do mercado como seus únicos guias. Eles calcularam os preços do mercado à mão, e representaram esses preços para denotar tendências e direção do mercado. Este processo foi bastante tedioso, mas provou ser bastante lucrativo com a confirmação de novos estudos. Para calcular uma média móvel simples de 10 dias, basta adicionar os preços de fechamento dos últimos 10 dias e dividir por 10. A média móvel de 20 dias é calculada adicionando os preços de fechamento em um período de 20 dias e dividindo em 20, e em breve. Esta fórmula não é apenas baseada em preços de fechamento, mas o produto é um meio de preços - um subconjunto. As médias móveis são denominadas em movimento porque o grupo de preços utilizado no cálculo se move de acordo com o ponto do gráfico. Isso significa que os dias velhos são descartados a favor de novos dias de fechamento, portanto, um novo cálculo sempre é necessário, correspondente ao prazo da média empregada. Assim, uma média de 10 dias é recalculada adicionando o novo dia e caindo no 10º dia, e o nono dia é descartado no segundo dia. (Para obter mais informações sobre como os gráficos são usados na negociação de moeda, veja o nosso Passo de Tarefas básicas do gráfico.) Média móvel exponencial (EMA) A média móvel exponencial foi refinada e mais comumente usada desde a década de 1960, graças a experimentos de praticantes anteriores com o computador. A nova EMA se concentraria mais nos preços mais recentes do que em uma longa série de pontos de dados, como a média móvel simples requerida. EMA atual ((Preço (atual) - EMA anterior)) X multiplicador) EMA anterior. O fator mais importante é a constante de suavização de 2 (1N) onde N o número de dias. Um EMA 2 de 10 dias (101) 18,8 Isso significa que um EMA de 10 períodos pesa o preço mais recente 18,8, um EMA 9,52 e EMFA de 3 dias de duração de 20 dias no dia mais recente. O EMA funciona ponderando a diferença entre o preço dos períodos atuais e o EMA anterior e adicionando o resultado ao EMA anterior. Quanto menor o período, mais peso se aplica ao preço mais recente. Linhas de montagem Por esses cálculos, os pontos são plotados, revelando uma linha de montagem. As linhas de montagem acima ou abaixo do preço de mercado significam que todas as médias móveis são indicadores de atraso. E são usados principalmente para seguir as tendências. Eles não funcionam bem com os mercados de alcance e os períodos de congestionamento porque as linhas de montagem não indicam uma tendência devido à falta de altos maiores evidentes ou baixos baixos. Além disso, as linhas de ajuste tendem a permanecer constantes sem um toque de direção. Uma linha ascendente abaixo do mercado significa uma longa, enquanto uma linha de encaixe que cai acima do mercado significa um curto. (Para um guia completo, leia nosso Tutorial de média móvel.) O objetivo de empregar uma média móvel simples é detectar e medir as tendências alisando os dados usando os meios de vários grupos de preços. Uma tendência é detectada e extrapolada em uma previsão. O pressuposto é que os movimentos da tendência anterior continuarão. Para a média móvel simples, uma tendência de longo prazo pode ser encontrada e seguida muito mais fácil do que uma EMA, com uma suposição razoável de que a linha de montagem será mais forte do que uma linha EMA devido ao maior foco nos preços médios. Um EMA é usado para capturar movimentos de tendência mais curtos, devido ao foco nos preços mais recentes. Por este método, uma EMA deve reduzir qualquer atraso na média móvel simples, de modo que a linha de montagem irá abraçar os preços mais perto do que uma média móvel simples. O problema com a EMA é o seguinte: é propenso a quebras de preços, especialmente durante mercados rápidos e períodos de volatilidade. O EMA funciona bem até que os preços baixem a linha de montagem. Durante os mercados de maior volatilidade, você poderia considerar aumentar o comprimento do termo médio móvel. Pode-se até mudar de um EMA para um SMA, uma vez que o SMA suaviza os dados muito melhor do que um EMA devido ao seu foco em meios de longo prazo. Indicadores de tendência seguinte Como indicadores de atraso, as médias móveis servem bem como linhas de suporte e resistência. Se os preços se reduzem abaixo de uma linha de ajuste de 10 dias em uma tendência ascendente, as chances são boas de que a tendência ascendente pode estar diminuindo, ou pelo menos o mercado pode estar se consolidando. Se os preços ultrapassarem uma média móvel de 10 dias em uma tendência de baixa. A tendência pode estar diminuindo ou se consolidando. Nesses casos, empregue uma média móvel de 10 e 20 dias em conjunto e espere que a linha de 10 dias atravesse acima ou abaixo da linha de 20 dias. Isso determina a próxima direção de curto prazo para os preços. Para períodos de longo prazo, observe as médias móveis de 100 e 200 dias para direção de longo prazo. Por exemplo, usando as médias móveis de 100 e 200 dias, se a média móvel de 100 dias se cruzar abaixo da média de 200 dias, é chamada de cruz de morte. E é muito competitivo para os preços. Uma média móvel de 100 dias que atravessa acima de uma média móvel de 200 dias é chamada de cruz dourada. E é muito otimista para os preços. Não importa se um SMA ou um EMA é usado, porque ambos são indicadores de tendência. É apenas a curto prazo que a SMA tem ligeiros desvios de sua contraparte, a EMA. Conclusão As médias móveis são a base da análise de gráficos e séries temporais. As médias móveis simples e as médias móveis exponenciais mais complexas ajudam a visualizar a tendência ao suavizar os movimentos de preços. A análise técnica às vezes é referida como uma arte ao invés de uma ciência, que leva anos para dominar. (Saiba mais no nosso Tutorial de Análise Técnica.) A abordagem EWMA tem um recurso atraente: requer relativamente poucos dados armazenados. Para atualizar nossa estimativa em qualquer ponto, precisamos apenas de uma estimativa prévia da taxa de variância e do valor de observação mais recente. Um objetivo secundário da EWMA é rastrear mudanças na volatilidade. Para valores pequenos, as observações recentes afetam a estimativa prontamente. Para valores mais próximos de um, a estimativa muda lentamente com base nas mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido por JP Morgan e disponibilizado) usa o EWMA para atualizar a volatilidade diária. IMPORTANTE: a fórmula EWMA não assume um nível de variância médio de longo prazo. Assim, o conceito de volatilidade significa reversão não é capturado pelo EWMA. Os modelos ARCHGARCH são mais adequados para esse fim. Um objetivo secundário da EWMA é acompanhar as mudanças na volatilidade, portanto, para valores pequenos, a observação recente afeta a estimativa prontamente e, para os valores mais próximos de uma, a estimativa muda lentamente para as mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido por JP Morgan) e disponibilizado em 1994, usa o modelo EWMA para atualizar a estimativa de volatilidade diária. A empresa descobriu que, em uma variedade de variáveis de mercado, esse valor dá uma previsão da variância que se aproxima da taxa de variância realizada. As taxas de variação realizadas em um determinado dia foram calculadas como uma média igualmente ponderada nos 25 dias subseqüentes. Da mesma forma, para calcular o valor ótimo de lambda para o nosso conjunto de dados, precisamos calcular a volatilidade realizada em cada ponto. Existem vários métodos, então escolha um. Em seguida, calcule a soma de erros quadrados (SSE) entre a estimativa EWMA e a volatilidade realizada. Finalmente, minimize o SSE variando o valor lambda. Soa simples é. O maior desafio é concordar com um algoritmo para calcular a volatilidade realizada. Por exemplo, as pessoas da RiskMetrics escolheram os 25 dias subseqüentes para calcular a taxa de variação realizada. No seu caso, você pode escolher um algoritmo que utilize preços diários, HILO e OPEN-CLOSE. Q 1: podemos usar o EWMA para estimar (ou prever) a volatilidade mais de um passo à frente A representação da volatilidade do EWMA não assume uma volatilidade média de longo prazo e, portanto, para qualquer horizonte de previsão além de um passo, o EWMA retorna uma constante valor:
No comments:
Post a Comment